首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3272篇
  免费   96篇
  国内免费   36篇
  2024年   3篇
  2023年   30篇
  2022年   18篇
  2021年   47篇
  2020年   46篇
  2019年   78篇
  2018年   68篇
  2017年   92篇
  2016年   78篇
  2015年   57篇
  2014年   105篇
  2013年   948篇
  2012年   87篇
  2011年   81篇
  2010年   74篇
  2009年   94篇
  2008年   79篇
  2007年   134篇
  2006年   121篇
  2005年   124篇
  2004年   131篇
  2003年   93篇
  2002年   80篇
  2001年   49篇
  2000年   54篇
  1999年   65篇
  1998年   35篇
  1997年   31篇
  1996年   54篇
  1995年   47篇
  1994年   35篇
  1993年   45篇
  1992年   42篇
  1991年   42篇
  1990年   21篇
  1989年   31篇
  1988年   17篇
  1987年   31篇
  1986年   13篇
  1985年   20篇
  1984年   32篇
  1983年   12篇
  1982年   16篇
  1981年   14篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   7篇
  1976年   4篇
  1971年   1篇
排序方式: 共有3404条查询结果,搜索用时 31 毫秒
111.
The molecular clock provides the only viable means of establishing realistic evolutionary timescales but it remains unclear how best to calibrate divergence time analyses. Calibrations can be applied to the tips and/or to the nodes of a phylogeny. Tip-calibration is an attractive approach since it allows fossil species to be included alongside extant relatives in molecular clock analyses. However, most fossil species are known from multiple stratigraphical horizons and it remains unclear how such age ranges should be interpreted to codify tip-calibrations. We use simulations and empirical data to explore the impact on precision and accuracy of different approaches to informing tip-calibrations. In particular, we focus on the effect of using tip-calibrations defined using the oldest vs youngest stratigraphic occurrences, the full stratigraphical range, as well as confidence intervals on these data points. The results of our simulations show that using different calibration approaches leads to different divergence-time estimates and demonstrate that concentrating tip-calibrations near the root of the dated phylogeny improves both precision and accuracy of estimated divergence times. Finally, our results indicate that the highest levels of accuracy and precision are achieved when fossil tips are calibrated based on the fossil occurrence from which the morphological data were derived. These trends were corroborated by analysis of an empirical dataset for Ursidae. Overall, we conclude that tip-dating analyses should, in particular, employ tip calibrations close to the root of the tree and they should be calibrated based on the age of the fossil used to inform the morphological data used in Total Evidence Dating.  相似文献   
112.
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50–60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24–28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.  相似文献   
113.
ABSTRACT

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.

The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.

Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body’s internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.

In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.  相似文献   
114.
ABSTRACT

Photoperiodic treatments have been of practical interest in controlling seasonal reproduction in sheep, goats and horses. Melatonin is the principal mediator of the environmental photoperiodic message. To investigate the intra- and inter-subject variability of melatonin 24 h rhythm, ten female Italian Saddle horses (8–10 yrs old, mean body weight 525 ± 30 kg), ten female Sarda breed sheep (2–3 yrs old, mean body weight 40.5 ± 2.8 kg) and ten female Sarda breed goats (3–4 yrs old, mean body weight 38.9 ± 4.1 kg), housed individually in a 4 × 4 m soundproof box equipped with 50 × 100 cm opening windows, were subjected to a natural photoperiod of the vernal equinox (sunrise 06:00 h; sunset 18:00 h). Blood samples were collected from each animal, every 3 h over a 48 h period starting at 00:00 h of day 1 and ending at 00:00 h of day 3. Plasma melatonin concentrations were determined by direct radioimmunoassay (MelatoninDirect RIA, Labor Diagnostika Nord GmbH, Nordhorn, Germany). The application of single cosinor method substantiated a circadian rhythm of melatonin with a nocturnal peak in all studied species. The application of two-way ANOVA on the rhythmic parameters indicated statistically significant differences between the three species in all of the cosinor analysis-derived parameters of MESOR, amplitude, acrophase and robustness of rhythm. Analyses of intra- and inter-subject variability indicate that organization of the melatonin 24 h rhythm is characterized by great accuracy of control within and between the individuals of a breed. In conclusion, features of the 24 h rhythm of melatonin among species; however, the 24 h rhythmicity of melatonin each species showed high stability within the various subjects and within the same subject. These findings must be taken into consideration when applying photoperiod and melatonin treatments for breeding purposes.  相似文献   
115.
Evidence can provide support for or against a particular biogeographical hypothesis. Treating a hypothesis as if it were evidence or an empirical observation confounds many biogeographical analyses. We focus on two recent publications that address, in part, the evolution of the biota of Sulawesi, the large Indonesian island in the centre of the Indo‐Australian Archipelago. Many biogeographical explanations are hampered by invoking simple notions of mechanism or process – dispersal and vicariance – or constraints, such as dispersal from a centre of origin, and, in so doing, dismiss more complex geological phenomena such as emergent volcanoes within island chains or composite areas as irrelevant. Moreover, they do not search for, therefore never discover, biogeographical patterns that may better explain the distribution of biota through time.  相似文献   
116.
《Chronobiology international》2013,30(6):1120-1135
Light and feeding cycles strongly synchronize daily rhythms in animals, which may, as a consequence, develop food anticipatory activity (FAA). However, the light/food entraining mechanisms of the central circadian oscillator remain unknown. In this study, we investigate the existence of FAA in seven groups of zebrafish subjected to a light/dark (LD) cycle or constant light (LL) and different feeding regimes (random, fasting, and feeding in the middle of the light phase or dark phase). The aim was to ascertain whether the daily rhythm of behavior and clock gene (per1 and cry1) expression in the zebrafish brain was entrained by the light and feeding regime. The results revealed that FAA developed in zebrafish fed daily at a fixed time, under LD and under LL. Zebrafish displayed locomotor activity mostly during the daytime, although the percentage of activity during the light phase varied depending on feeding time (ranging from 93.2% to 63.1% in the mid-light and mid-dark fed groups, respectively). However, the different feeding regimes failed to modify the daily rhythm of per1 and cry1 expression in the zebrafish brain under LD (approximate acrophases [peak times] at ZT22 and ZT4, respectively; lights-on =?ZT0). Under LL, per1 and cry1 expression did not show significant daily rhythmicity, regardless of the feeding regime. These findings indicate that, although schedule-fed zebrafish developed FAA as regards locomotor activity, feeding had little effect on clock gene expression in whole brain homogenates, suggesting the feeding-entrainable oscillator may be located elsewhere or at specific brain sites. (Author correspondence: )  相似文献   
117.
Many inflammatory and autoimmune diseases are treated using synthetic glucocorticoids. However, excessive glucocorticoid can often cause unpredictable effects including muscle atrophy. Endogenous glucocorticoid levels robustly fluctuate in a circadian manner and peak just before the onset of the active phase in both humans and nocturnal rodents. The present study determines whether muscle atrophy induced by exogenous glucocorticoid can be avoided by optimizing dosing times. We administered single daily doses of the glucocorticoid analog dexamethasone (Dex) to mice for 10 days at the times of day corresponding to peak (early night) or trough (early morning) endogenous glucocorticoid levels. Administration at the acrophase of endogenous glucocorticoids significantly attenuated Dex-induced wasting of the gastrocnemius (Ga) and tibialis anterior (TA) muscles that comprise mostly fast-twitch muscle fibers. Real-time RT-PCR revealed that the Dex-induced mRNA expression of genes encoding the atrophy-related ubiquitin ligases Muscle Atrophy F-box (Fbxo32, also known as MAFbx/Atrogin-1) and Muscle RING finger 1 (Trim63, also known as MuRF1) in the Ga and TA muscles was significantly attenuated by Dex when administered during the early night. Dex negligibly affected the weight of the soleus (So) muscle that mostly comprises slow-twitch muscle fibers, but significantly and similarly decreased the weight of the spleen at both dosing times. These results suggest that glucocorticoid-induced muscle atrophy can be attenuated by optimizing the dosing schedule.  相似文献   
118.
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p?=?0.015), CRY1 (p?=?0.013), CRY2 (p?=?0.001), PER1 (p?<?0.0001), PER2 (p?<?0.001), PER3 (p?=?0.001) and SIRT1 (p?=?0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis (?<?0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p?=?0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis.  相似文献   
119.
《Chronobiology international》2013,30(8):1587-1601
Aging can be associated with changes in circadian rhythms and reduction in adaptive immune responses accompanied by expansion of memory T cells and elevated levels of pro-inflammatory cytokines. Recent findings suggest the cytokine interferon-γ (IFN-γ) can affect the function of the hypothalamic suprachiasmatic nucleus (SCN), the master mammalian circadian pacemaker, both in vitro and in vivo. We studied the correlation of plasma levels of IFN-γ and changes in circadian rhythms in a non-human primate species, the nocturnal mouse lemur (Microcebus murinus). Plasma IFN-γ and dehydroepiandrosterone sulfate (DHEA-S), a known biomarker of aging, were determined in middle- to old-age animals by immunoenzymoassay. Daily rhythms of locomotor activity and body temperature as well as survival time of the lemurs were recorded. With aging, mean levels of DHEA-S decreased whereas IFN-γ increased. Aged animals showed biological rhythm alterations characterized by a high percentage of diurnal activity, anticipation of the activity onset relative to lights-off, short free-running period, and delayed occurrence of minimal body temperature. The magnitude of these disturbances was correlated with the plasma level of IFN-γ but not DHEA-S. Most remarkably, in contrast to DHEA-S, increased levels of IFN-γ correlated with duration of the lifetime of the lemurs. These results show the degree of circadian rhythm alterations in an individual is correlated with plasma IFN-γ level during aging, and that plasma IFN-γ level may predict survival, at least in this non-human primate. (Author correspondence: )  相似文献   
120.
One of the classic organisms used in chronobiological research is the fiddler crab (genus Uca), an animal unique in that it displays both circadian and tidal (i.e., circalunidian) rhythms. The pioneering work on this animal helped produce the early evidence for many of the standard properties now recognized for all circadian rhythms: near temperature independence of the period, phase lability and setability, the light and temperature sensitivity rhythms expressed by phase response curves, and the persistence of rhythms in organs isolated from a multicellular animal. Importantly, results arising from studies of this crab–and a few other organisms–resulted in the development of the exogenous timing hypothesis. While philosophically sound, the lack of supporting evidence for this hypothesis has resulted in it being discarded by most chronobiologists; but while still in its prime, it drew great interest, and therefore grant support, to the field in general, stimulated a great deal of research that otherwise might not have been performed, and resulted in the discovery of environmental stimuli previously unsuspected to influence organisms. As could be expected, continuing work with this crab, using modern approaches and statistical techniques, has modified earlier findings and interpretations, has revealed new properties, and has resulted in the creation of new hypotheses. The review and update is a synthesis of 45 years of this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号